3.92 \(\int \frac{\sqrt{b \cos (c+d x)} (A+C \cos ^2(c+d x))}{\sqrt{\cos (c+d x)}} \, dx\)

Optimal. Leaf size=90 \[ \frac{A x \sqrt{b \cos (c+d x)}}{\sqrt{\cos (c+d x)}}+\frac{C x \sqrt{b \cos (c+d x)}}{2 \sqrt{\cos (c+d x)}}+\frac{C \sin (c+d x) \sqrt{\cos (c+d x)} \sqrt{b \cos (c+d x)}}{2 d} \]

[Out]

(A*x*Sqrt[b*Cos[c + d*x]])/Sqrt[Cos[c + d*x]] + (C*x*Sqrt[b*Cos[c + d*x]])/(2*Sqrt[Cos[c + d*x]]) + (C*Sqrt[Co
s[c + d*x]]*Sqrt[b*Cos[c + d*x]]*Sin[c + d*x])/(2*d)

________________________________________________________________________________________

Rubi [A]  time = 0.0231953, antiderivative size = 90, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 3, integrand size = 35, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.086, Rules used = {17, 2635, 8} \[ \frac{A x \sqrt{b \cos (c+d x)}}{\sqrt{\cos (c+d x)}}+\frac{C x \sqrt{b \cos (c+d x)}}{2 \sqrt{\cos (c+d x)}}+\frac{C \sin (c+d x) \sqrt{\cos (c+d x)} \sqrt{b \cos (c+d x)}}{2 d} \]

Antiderivative was successfully verified.

[In]

Int[(Sqrt[b*Cos[c + d*x]]*(A + C*Cos[c + d*x]^2))/Sqrt[Cos[c + d*x]],x]

[Out]

(A*x*Sqrt[b*Cos[c + d*x]])/Sqrt[Cos[c + d*x]] + (C*x*Sqrt[b*Cos[c + d*x]])/(2*Sqrt[Cos[c + d*x]]) + (C*Sqrt[Co
s[c + d*x]]*Sqrt[b*Cos[c + d*x]]*Sin[c + d*x])/(2*d)

Rule 17

Int[(u_.)*((a_.)*(v_))^(m_)*((b_.)*(v_))^(n_), x_Symbol] :> Dist[(a^(m + 1/2)*b^(n - 1/2)*Sqrt[b*v])/Sqrt[a*v]
, Int[u*v^(m + n), x], x] /; FreeQ[{a, b, m}, x] &&  !IntegerQ[m] && IGtQ[n + 1/2, 0] && IntegerQ[m + n]

Rule 2635

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> -Simp[(b*Cos[c + d*x]*(b*Sin[c + d*x])^(n - 1))/(d*n),
x] + Dist[(b^2*(n - 1))/n, Int[(b*Sin[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && Integer
Q[2*n]

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rubi steps

\begin{align*} \int \frac{\sqrt{b \cos (c+d x)} \left (A+C \cos ^2(c+d x)\right )}{\sqrt{\cos (c+d x)}} \, dx &=\frac{\sqrt{b \cos (c+d x)} \int \left (A+C \cos ^2(c+d x)\right ) \, dx}{\sqrt{\cos (c+d x)}}\\ &=\frac{A x \sqrt{b \cos (c+d x)}}{\sqrt{\cos (c+d x)}}+\frac{\left (C \sqrt{b \cos (c+d x)}\right ) \int \cos ^2(c+d x) \, dx}{\sqrt{\cos (c+d x)}}\\ &=\frac{A x \sqrt{b \cos (c+d x)}}{\sqrt{\cos (c+d x)}}+\frac{C \sqrt{\cos (c+d x)} \sqrt{b \cos (c+d x)} \sin (c+d x)}{2 d}+\frac{\left (C \sqrt{b \cos (c+d x)}\right ) \int 1 \, dx}{2 \sqrt{\cos (c+d x)}}\\ &=\frac{A x \sqrt{b \cos (c+d x)}}{\sqrt{\cos (c+d x)}}+\frac{C x \sqrt{b \cos (c+d x)}}{2 \sqrt{\cos (c+d x)}}+\frac{C \sqrt{\cos (c+d x)} \sqrt{b \cos (c+d x)} \sin (c+d x)}{2 d}\\ \end{align*}

Mathematica [A]  time = 0.0734354, size = 52, normalized size = 0.58 \[ \frac{\sqrt{b \cos (c+d x)} (2 (2 A+C) (c+d x)+C \sin (2 (c+d x)))}{4 d \sqrt{\cos (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[(Sqrt[b*Cos[c + d*x]]*(A + C*Cos[c + d*x]^2))/Sqrt[Cos[c + d*x]],x]

[Out]

(Sqrt[b*Cos[c + d*x]]*(2*(2*A + C)*(c + d*x) + C*Sin[2*(c + d*x)]))/(4*d*Sqrt[Cos[c + d*x]])

________________________________________________________________________________________

Maple [A]  time = 0.428, size = 54, normalized size = 0.6 \begin{align*}{\frac{C\cos \left ( dx+c \right ) \sin \left ( dx+c \right ) +2\,A \left ( dx+c \right ) +C \left ( dx+c \right ) }{2\,d}\sqrt{b\cos \left ( dx+c \right ) }{\frac{1}{\sqrt{\cos \left ( dx+c \right ) }}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+C*cos(d*x+c)^2)*(b*cos(d*x+c))^(1/2)/cos(d*x+c)^(1/2),x)

[Out]

1/2/d*(b*cos(d*x+c))^(1/2)*(C*cos(d*x+c)*sin(d*x+c)+2*A*(d*x+c)+C*(d*x+c))/cos(d*x+c)^(1/2)

________________________________________________________________________________________

Maxima [A]  time = 1.89713, size = 70, normalized size = 0.78 \begin{align*} \frac{{\left (2 \, d x + 2 \, c + \sin \left (2 \, d x + 2 \, c\right )\right )} C \sqrt{b} + 8 \, A \sqrt{b} \arctan \left (\frac{\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1}\right )}{4 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*cos(d*x+c)^2)*(b*cos(d*x+c))^(1/2)/cos(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

1/4*((2*d*x + 2*c + sin(2*d*x + 2*c))*C*sqrt(b) + 8*A*sqrt(b)*arctan(sin(d*x + c)/(cos(d*x + c) + 1)))/d

________________________________________________________________________________________

Fricas [A]  time = 1.71854, size = 459, normalized size = 5.1 \begin{align*} \left [\frac{2 \, \sqrt{b \cos \left (d x + c\right )} C \sqrt{\cos \left (d x + c\right )} \sin \left (d x + c\right ) +{\left (2 \, A + C\right )} \sqrt{-b} \log \left (2 \, b \cos \left (d x + c\right )^{2} - 2 \, \sqrt{b \cos \left (d x + c\right )} \sqrt{-b} \sqrt{\cos \left (d x + c\right )} \sin \left (d x + c\right ) - b\right )}{4 \, d}, \frac{\sqrt{b \cos \left (d x + c\right )} C \sqrt{\cos \left (d x + c\right )} \sin \left (d x + c\right ) +{\left (2 \, A + C\right )} \sqrt{b} \arctan \left (\frac{\sqrt{b \cos \left (d x + c\right )} \sin \left (d x + c\right )}{\sqrt{b} \cos \left (d x + c\right )^{\frac{3}{2}}}\right )}{2 \, d}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*cos(d*x+c)^2)*(b*cos(d*x+c))^(1/2)/cos(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

[1/4*(2*sqrt(b*cos(d*x + c))*C*sqrt(cos(d*x + c))*sin(d*x + c) + (2*A + C)*sqrt(-b)*log(2*b*cos(d*x + c)^2 - 2
*sqrt(b*cos(d*x + c))*sqrt(-b)*sqrt(cos(d*x + c))*sin(d*x + c) - b))/d, 1/2*(sqrt(b*cos(d*x + c))*C*sqrt(cos(d
*x + c))*sin(d*x + c) + (2*A + C)*sqrt(b)*arctan(sqrt(b*cos(d*x + c))*sin(d*x + c)/(sqrt(b)*cos(d*x + c)^(3/2)
)))/d]

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*cos(d*x+c)**2)*(b*cos(d*x+c))**(1/2)/cos(d*x+c)**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (C \cos \left (d x + c\right )^{2} + A\right )} \sqrt{b \cos \left (d x + c\right )}}{\sqrt{\cos \left (d x + c\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*cos(d*x+c)^2)*(b*cos(d*x+c))^(1/2)/cos(d*x+c)^(1/2),x, algorithm="giac")

[Out]

integrate((C*cos(d*x + c)^2 + A)*sqrt(b*cos(d*x + c))/sqrt(cos(d*x + c)), x)